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1. INTRODUCTION

The nature of stationarity of the Rayleigh Quotient was the subject of an article published
in 1997 [1]. The major drawbacks of the Rayleigh–Ritz method of finding natural
frequencies are the difficulties in obtaining admissible functions and the lack of
information on the error bounds [2]. While the use of restraints with very large stiffnesses
appears to have alleviated the need to find admissible functions that do not violate any
geometric constraint [3–5], this reader is not aware of any general procedure to estimate
the maximum possible error in a Rayleigh–Ritz scheme (some method for finding lower
bounds are available [6], but these are not easy to apply, generally). For this reason, the
article by Prof. Bhat [1] assumes significance because it concludes that the accuracy of
natural frequencies computed by energy methods (including the Rayleigh–Ritz method)
can be checked by examining whether the computed natural frequencies are minimum at
the corresponding computed natural modes. This was demonstrated numerically for some
specific systems, but has not been proven to be true for a general case. However it can be
shown that the suggested method fails to predict the degree of accuracy for some systems.
In fact, as explained in this note, it is not valid even for the systems considered in reference
[1] if different functions are chosen as admissible functions. It is possible that the method
proposed in reference [1] may apply under certain conditions, but unless such conditions
are known, it is unlikely to give reliable prediction of errors or error bounds.

In reference [1], it is stated that in the case of exact natural frequencies and modes,
the second derivative of the Rayleigh Quotient given by Kjj � o2Mjj is zero, and
therefore the frequencies are not stationary with respect to the displacement coefficients Qj:
However, it is well established that each of the frequencies calculated using the Rayleigh–
Ritz method is indeed a minimum [6–8]. Furthermore, since the Rayleigh–Ritz modes
are also orthogonal to each other (in the limited Rayleigh–Ritz manifold) it is possible to
express the eigenvalue equations in a decoupled form (as for the exact modes) resulting in zero
values for Kjj}o2Mjj : This may be demonstrated by studying the cantilever problem treated
in reference [1].

2. RAYLEIGH–RITZ ANALYSIS OF A CANTILEVER BEAM

Expressing the displacement XðxÞ in terms of admissible functions,

XðxÞ ¼
X4
i¼1

QifiðxÞ; ð1Þ
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where the admissible functions used in reference [1] are

f1ðxÞ ¼ x2; f2ðxÞ ¼ x3; f3ðxÞ ¼ x4; f4ðxÞ ¼ x5: ð2a; b; c; dÞ

Let us use the calculated modes from a Rayleigh–Ritz analysis using the above set of
functions as admissible functions. This gives

f1ðxÞ ¼ 0�913x2 � 0�4x3 � 0�052x4 þ 0�059x5; ð3aÞ

f2ðxÞ ¼ 0�373x2 � 0�797x3 þ 0�469x4 � 0�074x5; ð3bÞ

f3ðxÞ ¼ �0�154x2 þ 0�602x3 � 0�732x4 þ 0�279x5; ð3cÞ

f4ðxÞ ¼ �0�097x2 þ 0�492x3 � 0�775x4 þ 0�384x5: ð3dÞ

This would result in diagonal stiffness and mass matrices and at the calculated frequencies

@2o2=@Q2
j ¼ Kjj � o2Mjj ¼ 0: ð4Þ

(The notation used here is the same as that in reference [1].) The frequency parameters
calculated would be the same as in reference [1] (3�516, 22�158, 63�347, 281�596). The
frequencies for the first two modes agree well with exact results (exact values being 3�5156,
22�034, 61�6972, 120�9019) but for the third mode, there is a noticeable deviation and there
is no agreement for the fourth one. The fact that the fourth frequency deviates
substantially from the exact value while the first two are in good agreement, cannot be
discovered by checking the sign of @2o2=@Q2

j :

2.1. ANALYSIS WITH TWO SPECIFIC ADMISSIBLE FUNCTIONS

Now let us consider the results with the following two-term Rayleigh–Ritz solution:
Using

XðxÞ ¼
X2
i¼1

QifiðxÞ; ð5Þ

where

f1ðxÞ ¼ 4x2 � 8x3 þ 5x4 and f2ðxÞ ¼ x2 � 4x3 þ 5x4 ð6a; bÞ

gives the stiffness and mass matrices as follows:

½K � ¼
48EI=L3 96EI=L3

96EI=L3 228EI=L3

" #
and ½M� ¼

53mL=315 139mL=630

139mL=6303 113mL=315

" #
: ð7a; bÞ

Solving ½K � ¼ o2½M� with these matrices, we arrive at the following non-dimensional
frequency parameters (given by oL2

ffiffiffiffiffiffiffiffiffiffiffiffi
m=EI

p
) and modes:

non-dimensional frequency parameters :
12�423
33�469

( )
ð8aÞ

mode 1 : fQgð1Þ ¼
1

�0�356

( )
and mode 2 : fQgð2Þ ¼

1

0�929

( )
: ð8b; cÞ

Comparing these with the exact results, we find that the deviation between the Rayleigh–
Ritz and exact values for the first and second frequencies are 254 and 52% respectively.
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The second derivatives of the Rayleigh Quotient @2o2=@Q2
j at the calculated frequencies

are as follows:
@2o2=@Q2

1=22�03 (positive) at the first calculated frequency and �140�5 (negative) at
the second frequency.

@2o2=@Q2
2=172�6 (positive) at the first calculated frequency and �173�8 (negative) at

the second frequency.
The above figures clearly show that the sign of the second derivative cannot generally be

taken as an indicator of the accuracy of a Rayleigh–Ritz solution.
Another point worth considering here is that the type of stationarity of the calculated

frequencies in a Rayleigh–Ritz procedure has been shown to be minimum but one needs to
bear in mind that this is subject to the orthogonality conditions. That is, with the exception
of the highest natural frequency in a finite degree of freedom system, the calculated value of
the rth frequency would be a minimum (and upperbound to that of the exact frequency) in
the Rayleigh–Ritz manifold subject to ðr � 1Þ orthogonality conditions [6, 8]. This may be
demonstrated by applying the orthogonality constraints to the lower modes and investigating
the variation of the Rayleigh Quotient near the calculated frequencies as follows.

2.2. ANALYSIS WITH FOUR SIMPLE POLYNOMIALS AS ADMISSIBLE FUNCTIONS

Let us now revisit the solution developed in reference [1], with admissible functions given
by equation (2a–c) but this time applying the conditions that the higher modes are orthogonal
to the previous modes. Let us consider the third mode as an example. The statements of
orthogonality of the third mode with respect to the first two modes may be written asZ L

0

mðQ1x
2 þ Q2x3 þ Q3x

4 þ Q4x5Þð0�913x2 � 0�4x3 � 0�052x4 þ 0�059x5Þ dx ¼ 0; ð9aÞ

Z L

0

mðQ1x
2 þ Q2x3 þ Q3x

4 þ Q4x5Þð0�373x2 � 0�797x3 þ 0�469x4 � 0�074x5Þ dx ¼ 0: ð9bÞ

The mass per unit length, m and length, L for the beam may be taken as unity, since only
non-dimensional parameters are required. On substitution and integration, equations (9a)
and (9b) reduce to

0�115880 Q1þ0�095080 Q2þ0�080551 Q3þ0�069844 Q4 ¼ 0; ð9cÞ

�0�000483 Q1�0�001288 Q2�0�001628 Q3�0�001758 Q4 ¼ 0: ð9dÞ
From these two equations, we can arrive at the following relationships between various Qi

values:
Q3 ¼ �6�096 Q1 � 2�769 Q2; Q4 ¼ 5�3716 Q1 þ 1�8324 Q2: ð10a; bÞ

To consider the variation of the Rayleigh Quotient in the neighbourhood of the third
mode, it is important to adjust the coefficients Q3 and Q4 to allow for equations (10a,b) to
be satisfied. With these constraints, we may plot the variation of the frequency parameter
o2 (the Rayleigh Quotient) in the neighbourhood of the third calculated frequency
parameter of 63�347. The variation of o2 with Q1 for Q2 ¼ 0�602 and with Q2 for
Q1 ¼ �0�154 are shown in Figures 1 and 2. These plots clearly show that the Rayleigh
Quotient is a minimum in the neighbourhood of the third calculated natural frequency.
The difference between these figures and Figures 1(i) and 1(j) in reference [1] is that the
present figures are based on Rayleigh Quotients calculated after applying the constraint
conditions. Similarly the variation of the Rayleigh Quotient with Q3 or Q4 can be obtained
by expressing Q1 and Q2 in terms of Q3 and Q4 using equations (9c,d). This would confirm
that the Rayleigh Quotient is a minimum at the third calculated frequency with respect to
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Figure 1. Variation of the Rayleigh Quotient with Q2; for Q1 ¼ �0�154:
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Figure 2. Variation of the Rayleigh Quotient with Q1; for Q2 ¼ 0�602:
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Q3 and Q4 also. (The difference between the stationarity of the Rayleigh Quotient at
higher modes with and without the application of the constraint condition is analogous to
finding the minimum of a surface and the minimum of the surface in a plane that is defined
by an orthogonality condition.)

Another way to demonstrate the nature of stationarity of the calculated frequencies is to
use the Lagrangian multiplier method. This would require modification of the stiffness matrix
in reference [1] which would now include the constraint conditions associated with Lagrangian
multipliers. To illustrate this, let us apply the orthogonality conditions given by equations (9c)
and (9d) as the Lagrangian constraints. This gives the following modified matrices:

K½ � ¼

4 6 8 10 0�115880 �0�000483
6 12 18 24 0�095080 �0�001288
8 18 28:8 40 0�080551 �0�001628
10 24 40 400=7 0�069844 �0�001758

0�115880 0�095080 0�080551 0�069844 0 0

�0�000483 �0�001288 �0�001628 �0�001758 0 0

2
6666666664

3
7777777775

ð11aÞ
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and M½ � ¼

1=5 1=6 1=7 1=8 0 0

1=6 1=7 1=8 1=9 0 0

1=7 1=8 1=9 1=10 0 0

1=8 1=9 1=10 1=11 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666666664

3
7777777775
: ð11bÞ

Solving ½K � ¼ o2½M� with the above matrices would give only two natural frequencies
which are 63�347 and 281�596. The lowest for this system is the third calculated mode for
the original problem, but now with the constraint condition, it is the lowest (globally)
within the constrained domain of admissible functions.

In reference [1], the variation of the calculated natural frequency against the frequencies
corresponding to selected admissible functions was also investigated. Once again, if
conditions of orthogonality with respect to lower modes are applied, these procedures
would also result in minimum values for the frequencies.

3. CONCLUDING REMARKS

The results presented here show that the sign of the second derivative of the Rayleigh
Quotient is not necessarily a good indicator of the degree of accuracy of the frequencies
calculated using a Rayleigh–Ritz procedure, and illustrate the nature of stationarity of the
frequencies. As expected, the Rayleigh Quotient, and hence the frequency estimates, are
minimum in the neighbourhood of the calculated modes, if conditions of orthogonality of
the higher modes with all the lower modes are enforced.
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